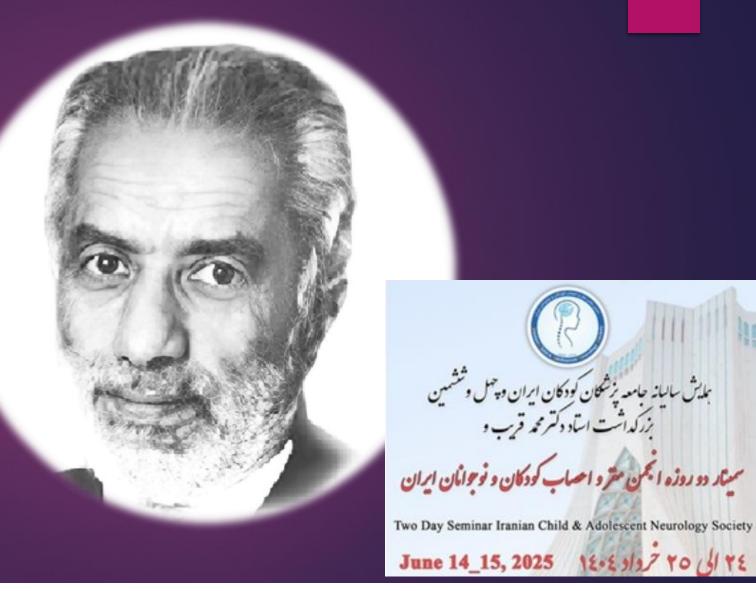


Recent Advances in Pediatric Epilepsy Management: From Diagnosis to Therapy

ZAHRA REZAEI MD
ASSISTANT PROFESSOR
CMCE,TUMS



مرکز بمایش فی دازی

شناسه باز آموزی: 23.477

رئیں ہلیش: وکتر علی ربانی 📗 🥒 دبیر علمی: وکتر محدر صابلورساز

Outlines

Updated ILAE Classification

Diagnostic Innovations

Therapeutic Advances

ILAE 2017 Classification of Seizure Types Expanded Version

Focal Onset

Aware

Impaired Awareness

Motor Onset

automatisms atonic 2 clonic epileptic spasms 2 hyperkinetic myoclonic tonic

Nonmotor Onset

autonomic behavior arrest cognitive emotional sensory

focal to bilateral tonic-clonic

Generalized Onset

Motor

tonic-clonic clonic tonic myoclonic myoclonic-tonic-clonic myoclonic-atonic atonic epileptic spasms

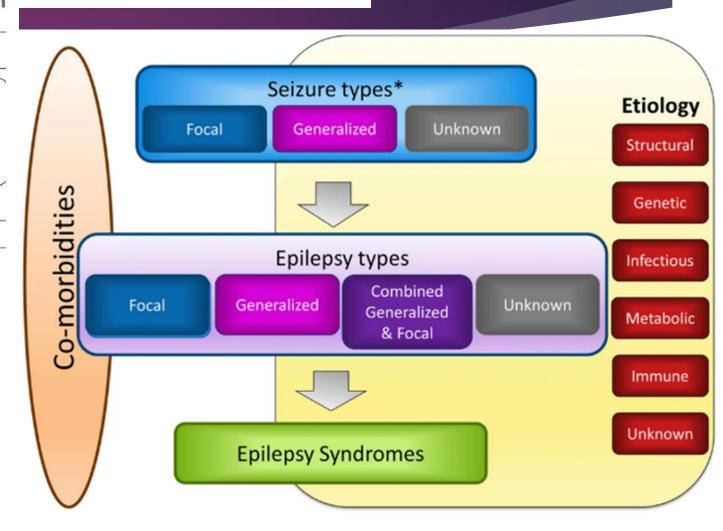
Nonmotor (absence)

typical atypical myoclonic eyelid myoclonia

Unknown Onset

Motor

tonic-clonic epileptic spasms Nonmotor behavior arrest


Unclassified 3

ILAE POSITION PAPER

Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology

*Robert S. Fisher, †J. Helen Cross, ‡Jacqueline A. French, §Norimichi Higurashi, ¶Edouard Hirsch, #Floor E. Jansen, **Lieven Lagae, ††Solomon L. Moshé, ‡‡Jukka Peltola, §§Eliane Roulet Perez, ¶Ingrid E. Scheffer, and ##***Sameer M. Zuberi

> Epilepsia, 58(4):522-530, 2017 doi: 10.1111/epi.13670

DOI: 10.1111/ept.1833

SPECIAL REPORT

Epilepsia

Updated classification of epileptic seizures: Position paper of the International League Against Epilepsy

Sándor Beniczky^{1,2,3} | Eugen Trinka^{4,5,6}
Raidah Al Baradie⁹ | Mario Alonso Val
Mamta Bhushan Singh¹⁴ | Hal Blumen
Roberto Caraballo¹⁷ | Mar Carreno^{18,19}
Augustina Charway²² | Mark Cook²³ | Birgit Frauscher^{28,29} | Jacqueline Frenc
Norimichi Higurashi³³ | Akio Ikeda³⁴ | Philippe Kahane³⁷ | Nirmeen Kishk³⁸ | Kollencheri Puthenveettil Vinayan⁴² | Li
Angelica Lizcano^{45,46} | Aileen McGoni₄
Katerina Tanya Perez-Gosiengfiao^{48,49,50} | Michael R. Sperling⁵³ | Hermann Stefa
Manjari Tripathi⁵⁶ | Elza Márcia Yacubia
Jo Wilmshurst⁵⁹ | Dong Zhou⁶⁰ | J.

Focal

Consciousness^{1,2} »Preserved »Impaired

Focal to bilateral tonic-clonic seizure

l :: Unknown

whether focal or generalized

Consciousness^{1,3} »Preserved »Impaired

Bilateral tonic-clonic seizure

Expanded descriptors:

Semiology descriptors in chronological sequence*, including focal epileptic spasms, myoclonus, tonic & clonic*

Generalized

- » Typical absence
 » Atypical absence
- » Atypical absence » Myoclonic absence
- » Eyelid myoclonia with / without

absence

» Negative myoclonic⁵
» Clonic⁵

» Myoclonic⁵

- » Epileptic spasms⁵
- » Tonic⁵
- » Myoclonic-atonic
- » Atonic¹

Generalized tonic-clonic seizure

- Myoclonic-tonic-clonic seizure
- Absence-to-tonic-clonic seizure

Unclassified

Focal

Consciousness^{1,2} »Preserved »Impaired

Focal to bilateral tonic-clonic seizure

Unknown

whether focal or generalized

Consciousness^{1,3} »Preserved »Impaired

> Bilateral tonic-clonic seizure

Generalized

»Absence seizures »Other generalized seizures

> Generalized tonic-clonic seizure

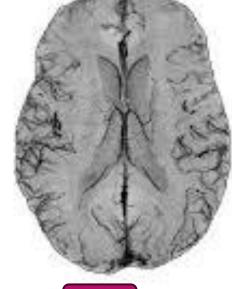
Basic descriptors:

With vs. Without observable manifestations

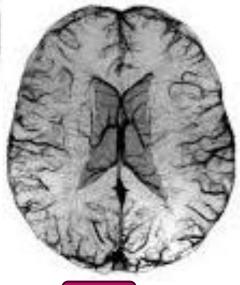
Unclassified

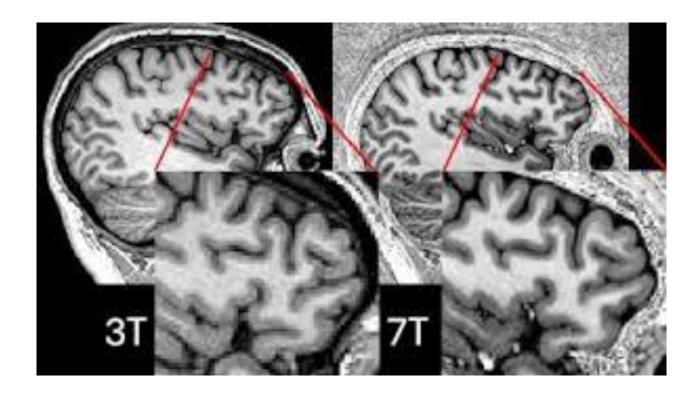
Diagnostic Innovations

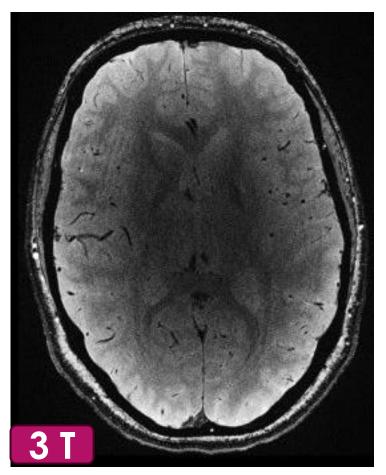
Telemedicine

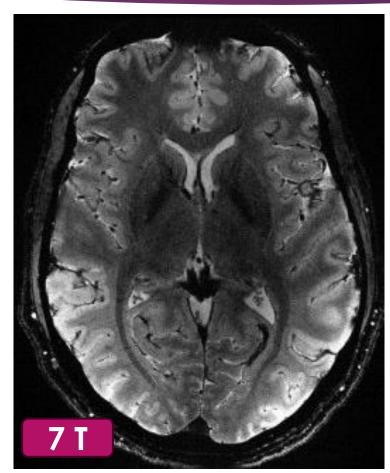

Artificial Intelligence

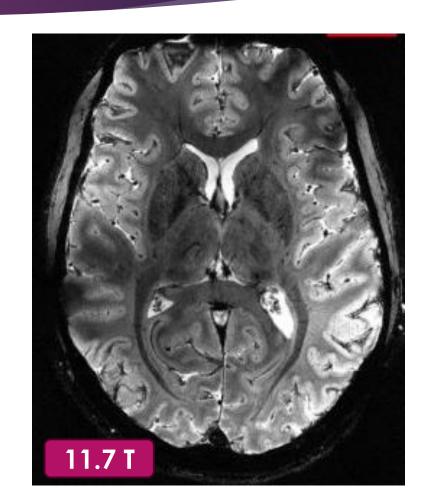
High Field MRI




Brain MRI


1.5 T

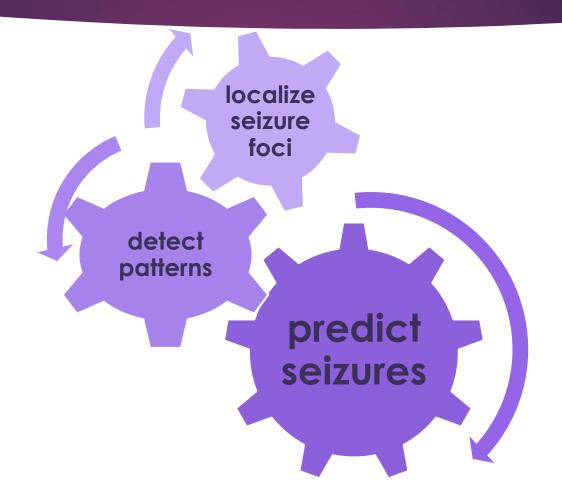



3 T

Brain MRI

News • Ultrahigh field strength

14 Tesla: Researchers to build world's strongest MRI scanner



Diagnostic Innovations Al in EEG interpretation and seizure prediction

- ► EEG is essential, but
 - time-consuming
 - pediatric EEG specialists
 - more artifacts and age-related variability in pediatric EEG

Clinical decision-making

Core Applications of Al in EEG

1. Automated Seizure Detection

- ► ICU monitoring (non-convulsive seizures)
- Ambulatory/home EEG (detect unobserved events)
- Real-time seizure alarm
- Example: Persyst, Nihon Kohden systems

Core Applications of Al in EEG

2. Interictal Epileptiform Discharge (IED) Detection

- Screening speed improvement
- ▶ Reduces the burden on EEG technicians and neurologists

Core Applications of AI in EEG

3. Seizure Onset Zone Localization

- ► All combined with high-density EEG (HD-EEG) or MEG helps: Predict focal regions
- Improve surgical candidacy evaluation

Summary

- It is not a replacement for expert review—Al supports, doesn't replace!
- ▶ Risk of false positives/negatives, especially with motion artifacts!
- Regulatory approval is still limited for certain pediatric-specific models
- **Ethical concerns** with autonomous decision-making!

Al helps us see patterns faster — but it's our job to interpret the story

Diagnostic Innovations Telemedicine in epilepsy care continuity

- ► Why Telemedicine?
 - ▶ Pediatric epilepsy is chronic-→ requires frequent follow-up
 - ► Many families live far from epilepsy centers
 - ▶ During the pandemic, telehealth proved effective --→ and it's here to stay!

Key Benefits in Seizure Control

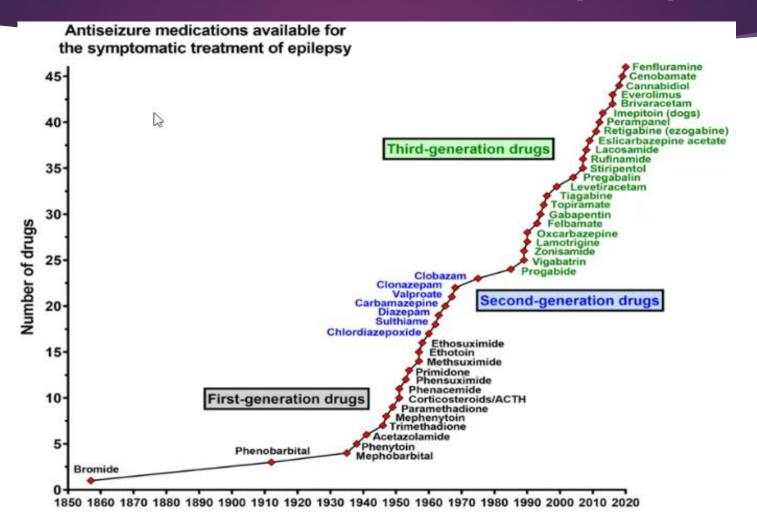
- Regular virtual visits, tighter follow-up (after changes)
- Monitoring side effects, comorbidities
- ▶ Improved monitoring → leads to better adherence
- Uploading videos of seizure events or digital diaries
- Parental Empowerment
- Easier access improves parent education, satisfaction, and involvement

Real-World Implementation

- Project ECHO Epilepsy (New Mexico & beyond)
- ► Children's Hospital of Philadelphia (CHOP)
- NIMHANS Epilepsy Center, Bengaluru

Summary

- ▶ Telemedicine is safe and effective
- Improves access and adherence
- Useful for ongoing management, not first-time seizures
- Strong parental satisfaction and reduced travel burden


Therapeutic Advances

Therapeutic Advances

New Anti-Seizure Medications (ASMs)

Approved after 2020

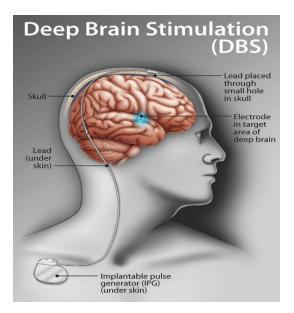
- 1. Cenobamate
- 2. Perampanel
- 3. Fenfluramine (Fintepla)
- 4. Brivaracetam (Briviact)
- 5. Soticlestat (Daybue)
- 6. Canabidiol

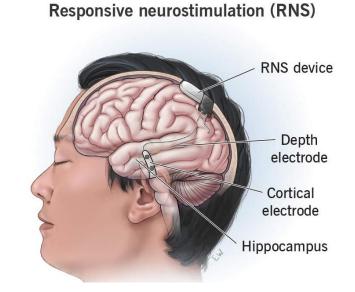
Review > Nat Rev Drug Discov. 2024 Sep;23(9):682-708. doi: 10.1038/s41573-024-00981-w. Epub 2024 Jul 22.

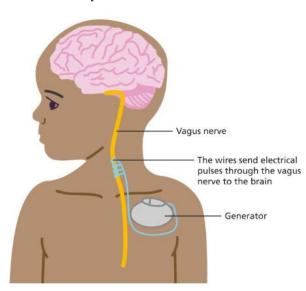
New epilepsy therapies in development

Drug	Companies	Mechanism of action	Indication	Status
PAMs at GABA _A receptors (GABAkines)				
Darigabat (formerly PF-06372865 and CVL-865)	Cerevel Therapeutics	a_1 -Sparing, $a_2/a_3/a_5$ -selective	Adult focal epilepsy	Phase II
ENX-101	Engrail Therapeutics	$a_2/a_3/a_5$ -Selective, a_1 -blocking	Focal-onset seizures	Phase I
SAN-2219	Saniona	a ₂ /a ₃ /a ₅ -Selective	Epilepsy	Preclinical
KRM-II-81	RespireRx Pharmaceuticals	a ₂ /a ₃ -Selective	Epilepsy	Preclinical
BAER-101	Avenue Therapeutics	a ₂ /a ₃ -Selective	Focal epilepsy	Phase IIa
SAN-711	Saniona	a ₃ -Selective	Generalized seizures	Phase I
Alogabat (RG-7816)	Roche	α₅-Selective	Angelman syndrome	Phase II
Ganaxolone (allopregnanolone analogue)	Marinus Pharmaceuticals	Neurosteroid analogue PAM on synaptic and extrasynaptic GABA _A receptors	Refractory SE and TSC	Phase II/III
Zuranolone (SAGE-217)	SAGE Therapeutics	Synthetic neurosteroid analogue PAM on synaptic and extrasynaptic GABA _A receptors	Seizures	Phase I
SAGE-324 (BIIB-124)	SAGE Therapeutics	Synthetic neurosteroid analogue PAM on synaptic and extrasynaptic GABA _A receptors	Epileptiform disorders	Phase I/II
SAGE-689	SAGE Therapeutics	Second-generation neuroactive steroid PAM on synaptic and extrasynaptic GABA _A receptors	Resistant SE	Phase I
Gaboxadol (OV101; THIP)	Ovid/Healx	Orthosteric agonist of $GABA_{\mathtt{A}}$ receptors with high affinity at extrasynaptic δ -subunit-containing receptors that mediate tonic inhibition	Angelman syndrome and FXS	Phase I/II
ETX-155	Eliem Therapeutics	Neuroactive steroid PAM on synaptic and extrasynaptic GABA _A receptors	Focal-onset seizures	Phase Ib
CPT-021	Mercaptor Discoveries	GABA _A receptor PAM	Epilepsy	Preclinical
GRX-917 (deuterated version of etifoxine)	GABA Therapeutics	GABA _A receptor PAM and activator of TSPO (increases synthesis of endogenous neurosteroids)	Epilepsy	Phase I

	Companies	Mechanism of action		Status
Drug			Indication	
PAMs, NAMs or antagonists at glutar	mate receptors (continued)			
JBPOS-0101	Bio-Pharm Solutions	Antagonist of mGlu1, mGlu4 and mGlu7	DEEs, refractory SE	Phase II
JNJ-55511118	Janssen	NAM of AMPA receptors containing TARP-γ8	Epilepsy	Phase I
CERC-611 (LY3130481)	Eli Lilly/Cerecor/Avalo Therapeutics	NAM of AMPA receptors containing TARP-γ8	Focal seizures	Preclinical
Radiprodil	GRIN Therapeutics/UCB Pharma	NAM of NR2B-NMDA receptors	Gain-of-function variants of GRIN2B	Phase II
AV-101	Vistagen	Prodrug of 7-chloro-kynurenic acid, a selective antagonist of glycine co-agonist site of NMDA receptor	Epilepsy	Phase I
PAM of the glutamate transporter EA	AAT2 (GLT1)			
iQ-007	iQure	PAM of astrocytic glutamate transporter EAAT2	DRE	Preclinical
Serotonergic (5-HT) mechanisms				
EPX-100 (clemizole HCl)	Epygenix	Probably modulation of 5-HT receptors	Dravet syndrome	Phase II
EPX-300 (trazodone HCl)	Epygenix	SSRI	Dravet syndrome	Phase I
Lorcaserin (E2023)	Eisai	5-HT _{2C} receptor agonist	Dravet syndrome	Phase III
Bexicaserin (LP352)	Longboard Pharmaceuticals	5-HT _{2C} receptor agonist	DEEs	Phase lb/
BMB-101	Bright Minds Biosciences	5-HT _{2C} receptor agonist	Dravet syndrome	Phase I
NLX-101	Neurolixis	5-HT _{1A} receptor agonist	Rett syndrome and FXS	Phase I
Potassium channel modulators				
XEN1101	Xenon Pharmaceuticals	PAM of neuronal Kv7.2-7.5 (KCNQ2-5) channels	Adult focal epilepsy, adult primary generalized epilepsy	Phase III
Pynegabine (HN37)	Chinese Academy of Sciences/Hainan Haiyao Company	PAM of neuronal Kv7.2-7.5 (KCNQ2-5) channels	Epilepsy	Phase I
BHV-7000 (KB-3061; BNP-25203)	Knopp Biosciences/ Biohaven Pharmaceuticals	Kv7.2/7.3 modulator	Seizures associated with KCNQ2 DEE; focal epilepsy, generalized epilepsy	Phase I-III
CB-003	Zhimeng Biopharma	Kv7.2/7.3 modulator	Epilepsy	Phase I
ZM-003	Protheragen	Kv7.2/7.3 modulator	Epilepsy	Preclinical
ETX-123	Eliem Therapeutics	Kv7.2/7.3 modulator	Epilepsy	Preclinical
AUT-00206	Autifony Therapeutics	Kv3.1/3.2 positive modulator	FXS	Phase II
AUT-00201	Autifony Therapeutics	Kv3.1/3.2 positive modulator	Orphan epilepsy syndromes	Phase I
PRAX-020	Praxis Precision Medicines/ UCB Pharma	Inhibitor of KCNT1 (T-type) channels	KCNT1-related DEE	Preclinical

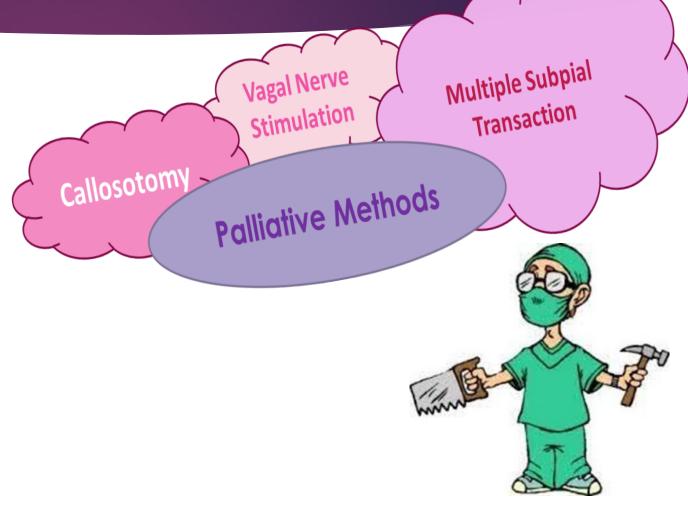

Therapeutic Advances Dietary Therapies


- Classic Ketogenic Modified diets
- ► Early initiation in refractory epilepsy
- ► First choice in some special epilepsy syndromes

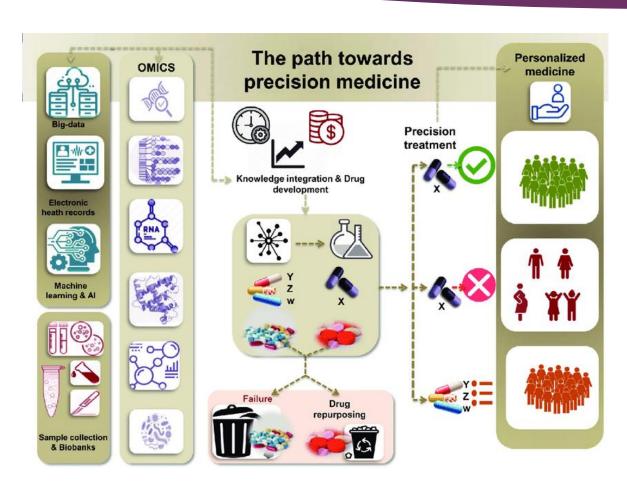


Therapeutic Advances Neuromodulation

- ▶ Vagus Nerve Stimulation (VNS): FDA-approved for children >4 years
- ▶ Responsive neurostimulation (RNS): under investigation in peds
- Deep Brain Stimulation (DBS): under investigation in peds


Therapeutic Advances Epilepsy Surgery

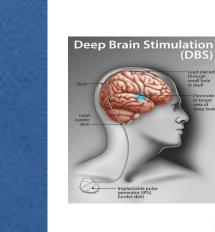
Hemispheric surgery

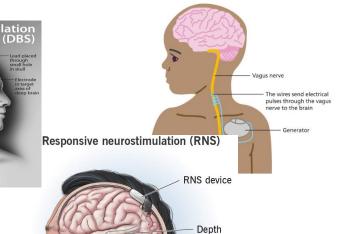

lesionectomy/

lobar resection

Multilobar resection

Therapeutic Advances Precision Medicine





electrode

Cortical electrode

Hippocampus

