APPROACH AND MANAGEMENT OF STROKE IN PEDIATRICS

GR.Zamani , Ped.Neurologist Children's Medical Center, TUMS Aug,2025

OBJECTIVES

By the end of this session, participants will be able to:

- Recognize key clinical features of pediatric stroke.
- Outline an organized diagnostic approach.
- Understand acute and long-term management strategies.
- Be familiar with common causes by age.

DEFINITION

 Pediatric stroke is a sudden-onset neurological deficit due to disruption of cerebral blood flow, caused by ischemia or hemorrhage, occurring from birth to 18 years.

EPIDEMIOLOGY

- Incidence: 2–13 per 100,000 children/year
- Higher in neonates less amount in infants & Children between 1 mo to 18 yrs
- AIS more common than hemorrhagic stroke in children
- Significant cause of long-term disability

CLASSIFICATION

Ischemic Stroke

- Arterial Ischemic Stroke (AIS):50%
- Cerebral Sinovenous Thrombosis (CSVT):50%
- TIA:transient ischemic attack that resolves within 24h

Hemorrhagic Stroke

- Intracerebral
- Subarachnoid
- Intraventricular

ь.

KEY DIFFERENCES: PEDIATRIC VS. ADULT STROKE

- Often delayed diagnosis
- More diverse etiology
- Seizures more frequent at onset
- Better neuroplasticity, but also more risk of long-term sequelae

AGE-RELATED ETIOLOGY &RISK FACTORS

Age Group	Common Causes

Neonates Birth asphyxia, CHD, sepsis, perinatal arterial stroke

Infant& Cardiac disorders, arteriopathy, sickle cell disease,

Children infection, cardiac disease, trauma

Arteriopathy (endocarditis, Moyamoya, Inf), Thrombophilia

onates Birth asphyxia, CHD, sepsis, perinatal arteri

drugs trauma

Adolescents

CLINICAL PRESENTATION

- Hemiparesis:60-80
- Seizures (especially in neonates)
- Altered mental status
- Headache
- Ataxia
- Visual field deficits
- Vomiting (in hemorrhagic stroke)

MNEWONIC "BE FAST" IN CHILDREN

- Balance loss
- Eyes (vision problems)
- Face drooping
- Arm drift
- Slurred Speech
- Time = act quickly

DIAGNOSTIC APPROACH

- Clinical suspicion and history
- Urgent neuroimaging
 - MRI with DWI preferred
 - CT if MRI not available (esp. for hemorrhage)
- Stroke protocol labs
 - CBC, CRP, glucose, coagulation profile, blood cultures,
 - Metabolic screen (selected cases)
 - Thrombophilia screen (in selected cases)
- Cardiac workup: Echo, ECG
- CSF if infectious
- Vasculitis(If suspected)

IMAGING IN PEDIATRIC STROKE

- MRI/MRA: preferred for ischemic stroke
- MRV: for suspected CSVT
- CT/CTA: for acute hemorrhage or emergency settings
- Delays in imaging □ missed early intervention opportunity

ACUTE PHASE MANAGEMENT

- Stabilize ABCs
- Control seizures, brain edema, BP, Sugar
- Avoid hypoxia, hypoglycemia, hypotension, fever
- Urgent neuro consult and imaging

AIS: ACUTE TREATMENT

- IV tPA: very limited use (age >2 years, within 4.5 hours, selected centers only)
- Mechanical thrombectomy: experimental in children, but used in large-vessel occlusion in selected cases
- Antithrombotic therapy:
 - Aspirin 3–5 mg/kg/day in most cases
 - Enaxaprin first &then switching to warfarin in cardioembolic/CSVT or prothrombotic states

ENOXAPARIN & WARFARIN IN PEDIATRIC STROKE

- Enoxaparin (LMWH): 1–1.8 mg/kg SC every 12 h, adjusted by anti-Xa levels (~0.5–1.0 IU/mL), typically for 3 months, with potential extension up to 6 months based on imaging response.
- Transition to Warfarin: INR target 2.0–3.0; duration aligned with enoxaparin—usually 3–6 months, or 6–12 months if underlying thrombophilia is present.
- Monitor platelet count and watch for hemorrhagic conversion, especially within the first 4 weeks .

MANAGING BRAIN EDEMA IN HEMORRHAGIC STROKE

- First-line osmotic therapy:
 - Hypertonic saline (3 %, 2–5 mL/kg over 10–20 min): preferred over mannitol; maintain ICP <20 mmHg.
 - Mannitol (0.5–1 g/kg bolus q4–6 h): alternative; monitor serum osmolality (<320 mOsm/kg).
- Supportive measures:

ANTICOAGULATION IN CEREBRAL SINOVENOUS THROMBOSIS (CSVT)

- Enoxaparin (1–1.8 mg/kg BID) or UFH, even with hemorrhagic lesions, is safe and improves outcomes .
- Follow-up therapy: Warfarin for 3 months if provoked; 6–12 months if unprovoked or thrombophilia detected; lifelong if severe thrombophilia.
- Monitor anti-Xa levels for dosing adjustment.

ASPIRIN USE & DURATION

- Aspirin: 3–5 mg/kg daily in arterial ischemic stroke, neonates, or low-risk AIS cases .
- Duration ranges from 3 months to lifelong, depending on recurrence risk (e.g., cardiac disease or arteriopathy).
- LMWH and aspirin have similar efficacy in preventing recurrence.

CSVT: MANAGEMENT

- Anticoagulation is standard (even with hemorrhagic component)
 - LMWH preferred initially
 - Duration: 3–6 months depending on cause
- Treat underlying cause: infection, dehydration, malignancy

HEMORRHAGIC STROKE: MANAGEMENT

- ICU care
- Manage ICP, seizures, BP
- Neurosurgery if indicated (hematoma evacuation, shunt)
- Search for AVM, aneurysms, or coagulopathy

SECONDARY PREVENTION

- Identify and treat underlying causes:
 - Cardiac repair
 - Sickle cell: chronic transfusion
 - Moyamoya: revascularization surgery
 - Autoimmune: immunosuppressive therapy
- Long-term antithrombotics in selected patients

REHABILITATION

- Start early!
- Multidisciplinary team:
 - Physio, occupational, speech therapy
 - Neuropsychology
- Tailored to child's age, deficit, and family resources

PROGNOSIS

- ~60% of survivors have residual deficits
- Predictors of poor outcome:
 - Delayed diagnosis
 - Seizures
 - Large infarcts or bilateral strokes
- Better outcomes in neonates than older children

MIMICS OF STROKE IN CHILDREN

- Seizures/postictal paralysis (Todd's paresis)
- complicated Migraine
- Bell's palsy
- ADEM
- Hypoglycemia
- Conversion disorder (rare)

RED FLAGS FOR STROKE REFERRAL

- Acute focal deficits
- Prolonged seizures with persistent deficits
- Sudden-onset visual, speech, or balance issues
- Any child with cardiac disease and new neuro symptoms

TAKE-HOME MESSAGES

- Stroke does occur in children and often presents subtly
- Early recognition and imaging are critical
- Management depends on stroke type and cause
- Long-term care must include rehabilitation and prevention

THANK You!

